Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(22)2022 Nov 13.
Article in English | MEDLINE | ID: covidwho-2143225

ABSTRACT

Target-based drug design, a high-efficiency strategy used to guide the development of novel pesticide candidates, has attracted widespread attention. Herein, various natural-derived ferulic acid derivatives incorporating substituted isopropanolamine moieties were designed to target the tobacco mosaic virus (TMV) helicase. Bioassays demonstrating the optimized A19, A20, A29, and A31 displayed excellent in vivo antiviral curative abilities, affording corresponding EC50 values of 251.1, 336.2, 347.1, and 385.5 µg/mL, which visibly surpassed those of commercial ribavirin (655.0 µg/mL). Moreover, configurational analysis shows that the R-forms of target compounds were more beneficial to aggrandize antiviral profiles. Mechanism studies indicate that R-A19 had a strong affinity (Kd = 5.4 µM) to the TMV helicase and inhibited its ability to hydrolyze ATP (50.61% at 200 µM). Meanwhile, A19 could down-regulate the expression of the TMV helicase gene in the host to attenuate viral replication. These results illustrate the excellent inhibitory activity of A19 towards the TMV helicase. Additionally, docking simulations uncovered that R-A19 formed more hydrogen bonds with the TMV helicase in the binding pocket. Recent studies have unambiguously manifested that these designed derivatives could be considered as promising potential helicase-based inhibitors for plant disease control.


Subject(s)
Tobacco Mosaic Virus , Structure-Activity Relationship , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , DNA Helicases
2.
Biomed Res Int ; 2021: 9987931, 2021.
Article in English | MEDLINE | ID: covidwho-1367496

ABSTRACT

OBJECTIVE: Respiratory failure is the leading cause of mortality in COVID-19 patients, characterized by a generalized disbalance of inflammation. The aim of this study was to investigate the relationship between immune-inflammatory index and mortality in PSI IV-V patients with COVID-19. METHODS: We retrospectively reviewed the medical records of COVID-19 patients from Feb. to Apr. 2020 in the Zhongfa Xincheng Branch of Tongji Hospital, Wuhan, China. Patients who presented high severity of COVID-19-related pneumonia were enrolled for further analysis according to the Pneumonia Severity Index (PSI) tool. RESULTS: A total of 101 patients diagnosed with COVID-19 were identified at initial research. The survival analysis revealed that mortality of the PSI IV-V cohort was significantly higher than the PSI I-III group (p = 0.0003). The overall mortality in PSI IV-V patients was 32.1% (9/28). The fatal cases of the PSI IV-V group had a higher level of procalcitonin (p = 0.022) and neutrophil-to-lymphocyte ratio (p = 0.033) compared with the survivors. Procalcitonin was the most sensitive predictor of mortality for the severe COVID-19 population with area under receiver operating characteristic curve of 0.78, higher than the neutrophil-to-lymphocyte ratio (0.75) and total lymphocyte (0.68) and neutrophil (0.67) counts. CONCLUSION: Procalcitonin and neutrophil-to-lymphocyte ratio may potentially be effective predictors for mortality in PSI IV-V patients with COVID-19. Increased procalcitonin and neutrophil-to-lymphocyte ratio were associated with greater risk of mortality.


Subject(s)
COVID-19/immunology , COVID-19/physiopathology , Pandemics , SARS-CoV-2 , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/mortality , China/epidemiology , Cohort Studies , Female , Humans , Inflammation/immunology , Inflammation/physiopathology , Lymphocytes/immunology , Male , Middle Aged , Neutrophils/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Procalcitonin/blood , Prognosis , Retrospective Studies , Risk Factors , Severity of Illness Index , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL